Erra Viterbi Faculty of Andrew and GINEERING

Signal and Image Processing Lab

Image Colorization for Thermal Mobile Camera Images

Idan Friedman, Tomer Lotan and Ori Bryt

Motivation

- High quality thermal image colorization is a rising subject in AI field
- Several uses are possible, e.g. security

GAN - Generative Adversarial Network

- Contemporary structure of CNN for generating new data instances that resemble input training data
- Difficult to train but can achieve good results

- Problem is ill-defined
- No single solution which is best

Goals

- Develop a Deep Learning based technique for coloring monochromatic thermal images
- Aiming to achieve as accurate as possible domain transfer from thermal to RGB
- Acquiring raw data using mostly Flir1 Pro

• Relies on a generator-discriminator structure relationship

CycleGAN

- Involves automatic training of image-to-image translation models
- No need for paired examples (aligned data), but may require long convergence time

Challenges

- Images are not aligned
- Outdoor and indoor thermal images are different in behavior
- Modifying the network according to our needs
- Producing realistic high quality results

Flir1 Pro Camera

- Pocket thermal camera attached to smartphone
- Stills/Video available

Current results

Input 1

Database

- Acquired videos using Flir1 camera
- Outdoor videos separated to ~10,000
- thermal-RGB couples of images
- Image resolutions:
 - Thermal 640x480, RGB 1440x1080
- Both urban and nature images acquired

examples

Previous Project

- Same project goal
- Aligned images only
- GAN that produces RGB image out of the

aligned thermal image (Pix2Pix)

- Produce matched thermal-RGB image/video
- Several differences between domain outputs

Conclusions

- VGG loss has an important contribution
- Discriminator/Generator pre-train may help
- for faster convergence and better results
- Partial results can be helpful for tuning the

network

