

Signal and Image Processing Lab

Indoor/Outdoor Classification of Voice for Mobile Devices

Gabriel Mannes, Odelia Longini and Ori Bryt

In Collaboration with RAFAEL

Introduction

 The acoustic detection and classification area of research is now developing at a rapid pace, and special sessions on the topic are commonly encountered at international signal processing conferences

Transfer Learning

• Transfer learning and semi-supervised learning are a way to enable models to work better with limited amounts of data

Database

- Rafael's database
 - 668 samples 388 outdoor, 280 indoor
- 10 different rooms, 7 different outdoor areas

 Intelligence gathering often includes voice recordings, and the ability to detect and classify them can be important for security needs

Goals

- Classify two-way radio recordings to indoor/outdoor classes.
- The project goal will be achieved with Deep learning techniques
- Simulate Rafael's Database

Challenges

- Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a different yet similar task
 - Different features are extracted in each of the layers

The Network

 Performing machine learning involves creating a model, which is trained on some training data and then can process additional test data to make predictions

- Various audio clip lengths
- DCASE's database
 - 10 acoustic scenes (park, airport, street traffic, ...)
 - 14,400 samples of 10 seconds
- Manipulating data preprocessing:
 - Modeling the recording device by a frequency domain filter
 - Down-sampling the frequency
 - Adding main speaker in background scene
 - Audio clip length adjustment
 - Stereo to mono
 - Scene selection

Work Done

Network architecture for audio classification

- Lack of data for deep learning network training
- How could we use and maybe adjust a different wide database?

Deep Learning

- A subdomain of Machine learning
 - Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed

- The model is based on McDonnel's work on DCASE challenge 2019
 - DCASE (detection and classification of acoustic scene and events) is a technology challenge that takes place every year and strengthens the understanding and importance of developing methods for detecting and classifying acoustic signals
- The models input is a log-mel spectrogram

• The model architecture is based on ResNet - residual neural network

- Preprocessing Manipulate a large database to fit Rafael's database
- Transfer learning from manipulated data
- Training network on 80% data as training and testing with 20% data, without intersection

Results

- Understanding the inability to inference two different acoustic scenes
- Classification ability of 96.3% on Rafael's database, without using DCASE

June 2021

- Machine learning algorithms build a model based on sample data, known as "training data", in order to make predictions or decisions
- Characterized by having many hidden layers
- An Artificial neural network is a model based on a collection of connected units or nodes called "artificial neurons", which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit information, a "signal", from one artificial neuron to another
- ResNet utilizes skip connections, or shortcuts to jump over some layers
 - skip connections prevent the problem of vanishing gradients

