



Signal and Image Processing Lab



## **Compression for Continuous Long-Term Electrocardiography Recordings**

# Noam Ben-Moshe and Noa Cohen, Supervised by Sheina Gendelman and Asst. Prof. Joachim A. Behar

## Introduction

**The Problem** 

• An electrocardiogram (ECG) records the electrical signal from the heart.

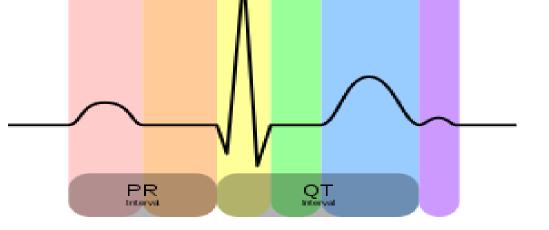


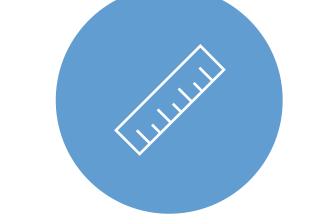
#### **Our Goal**

ECG compression with the following attributes 



- A long-term ECG provides insight into the behavior of the heart in the everyday life of the patient, for long periods of time.
- Such recordings have very large memory requirements and require compression for storing and transmitting.
- When lossy compression is applied to biomedical signals such as ECG, avoiding loss of important diagnostic data elements is critical.







**EFFICIENT COMPRESSION RATIO** 

**DIAGNOSTIC EQUIVALENCY** 

## Methods

#### Database

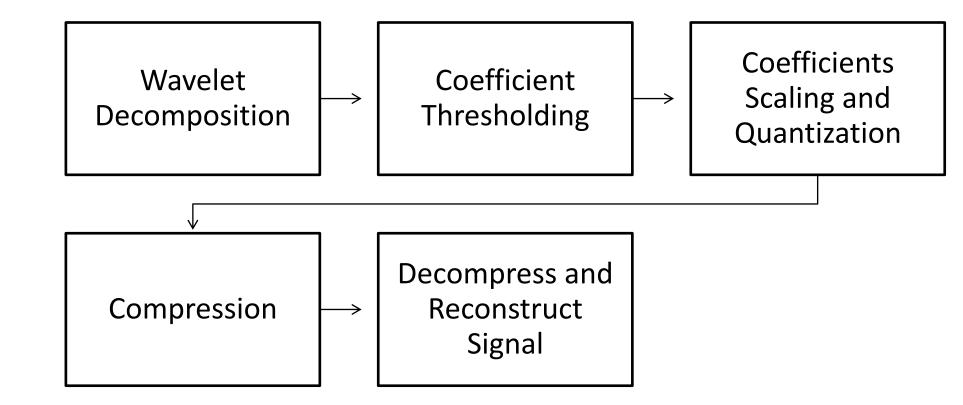
- Annotated ECG signals sampled at a frequency of 200[Hz].
- From 2,891 patients.  $\bullet$
- Each record lasts approximately 24 hours.
- The data contains 3 heart abnormalities.
- Appropriate to assess whether the compression affected the diagnostic information.

#### **Pre-Processing**

The data was resampled to 360Hz.  $\bullet$ 

#### **Wavelet Baseline**

- Lossy compression Based on (Elgendi et al, 2017 [1]).
- Uses a wavelet of type Bior4.4.

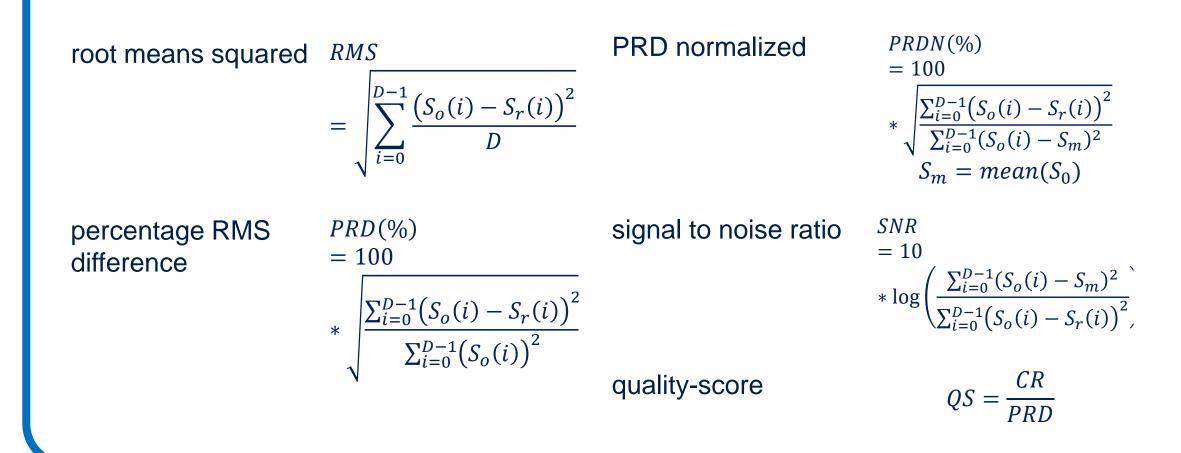


#### **Deep baseline**

- A deep network structure of an encoder and decoder totaling in 27 layers, based on (Yildirim et al, 2018 [2]).
- The training was preformed using the Adam Optimizer with initial learning rate of 0.001, weight decay of 1e-5 and batch size of 32.

- Passed through a band pass filter.
- Scaled to be in the range [0,1].

#### **Evaluation Criteria**



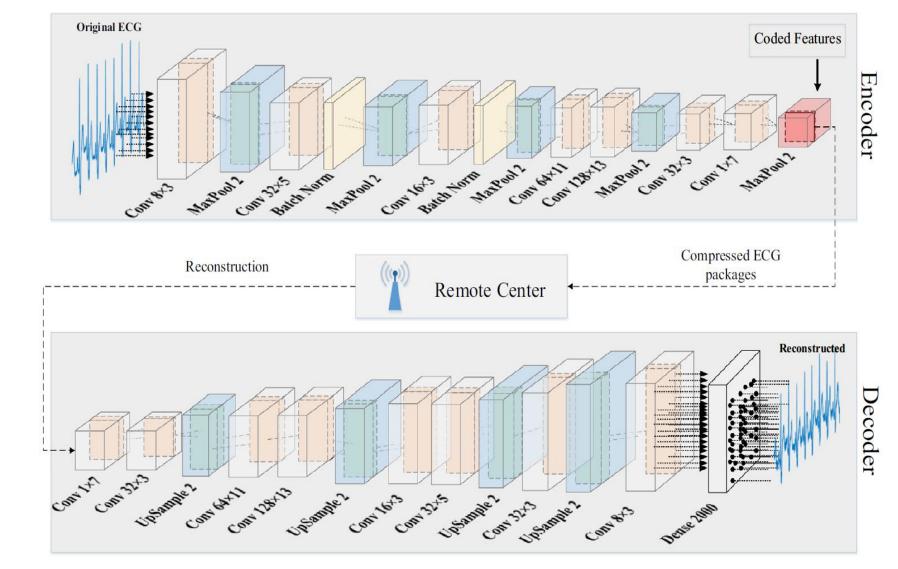


Fig. 3. The block representation of the proposed CAE model for ECG compression.

- Mohamed Elgendi, et al. "Efficient ECG Compression and QRS Detection for E-Health Applications." Sci. Rep., vol. 7, no. 1, pp. 1–16, Dec. 2017, doi: 10.1038/s41598-017-00540-x.
- Ozal Yildirim, et al. "An efficient compression of ECG 2. signals using deep convolutional autoencoders." Cogn. Syst. Res., vol. 52, pp. 198–211, Dec. 2018, doi: 10.1016/j.cogsys.2018.07.004.

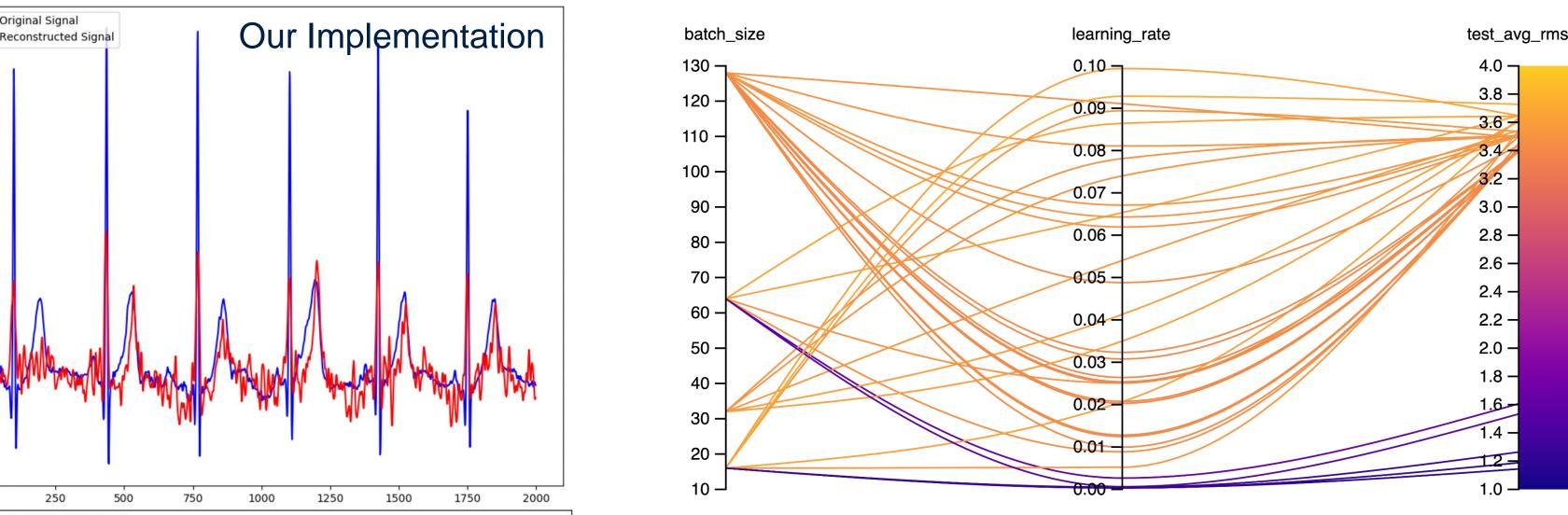
### Results

Original Signa

0.65

₹ 0.55 -

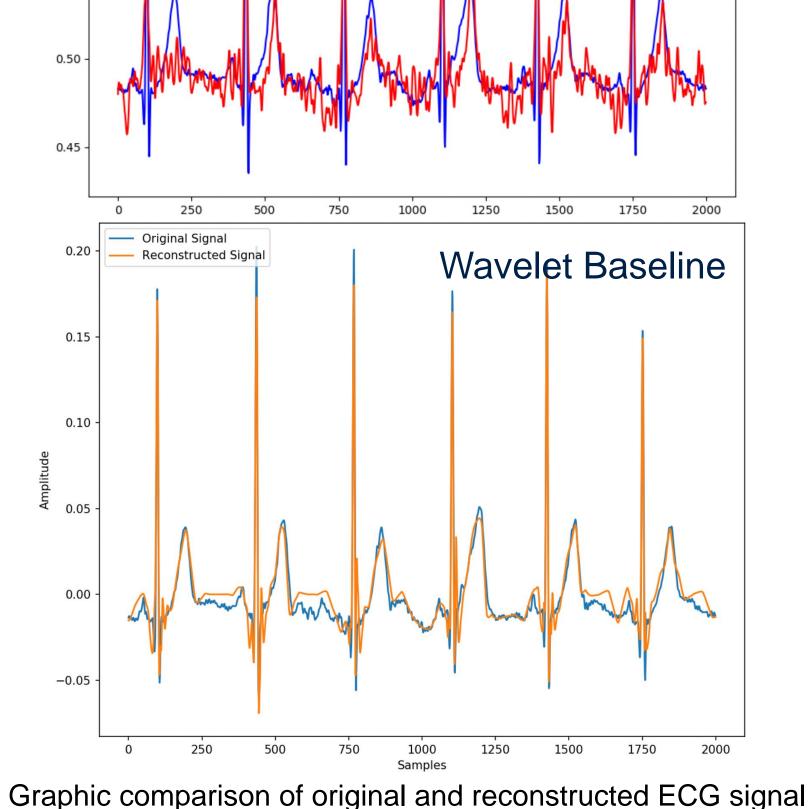
- Implementation was created using pyTorch. The training was preformed using the Adam Optimizer with initial learning rate of 0.001, weight decay of 1e-5 and batch size of 32.
- We compare the results of our implementation with the  $\bullet$ results of the original paper[1], both results were obtained by training with 48 healthy patients (20% used for validation), and the results of our wavelet baseline based on (Yildirim et al, 2018 [2]).



in the table.

The results on our data are not satisfying and so we continued to search for better parameters.

| Criteria | Original<br>Paper[2] | Our<br>Implementation | Wavelet Baseline |
|----------|----------------------|-----------------------|------------------|
| RMS      | 0.013                | 1.314                 | 0.011            |
| PRD      | 2.73%                | 5.364%                | 30.985%          |
| PRDN     | 31.17%               | 97.982%               | 30.985%          |
| SNR      | 23.96 dB             | 2.9918dB              | 23.588dB         |
| QS       | 13.38                | 11.381                | 0.343            |
| CR       | 32.25                | 32.25                 | 10.5             |



| <ul> <li>We computed a bayesian</li> </ul>                  |          |          |
|-------------------------------------------------------------|----------|----------|
| search on the hyper-parameters                              | Criteria | Value    |
| batch size and learning rate in                             | RMS      | 1.975    |
| order to find the best values. As                           | PRD      | 8.42%    |
| seen in the figure the best values are batch size of 16 and | PRDN     | 276.81%  |
| learning rate of 0.0004.                                    | SNR      | -7.867dB |
| <ul> <li>The results on the tests set</li> </ul>            | QS       | 6.907    |
| were still not satisfying as seen                           | CR       | 32.25    |