

Signal and Image Processing Lab

NOTA A random-projection based approach for generative modelling

Elad David, Supervised by Prof. Tomer Michaeli

Introduction

Generative modelling

Working in high dimension

Facing the Curse of Dimensionality

The Fitting Challenge

Fitting using finite sets raises problems for the generative transform

- deals with the inference problem of highdimensional data distribution
- Current methods (mostly Deep NN) require long gradient-based optimization, and have low flexibility for changes
- **Projection based approach**
- Multi-directional view allow density inference (e.g., CT imaging)

Toy example - Swiss roll - 3D representation & 2D joint plot

Goal

Develop an **iterative method** for highdimensional **distribution modelling** with 'state of the art performance'

- Utilize multi-scale and spatial relations (work with patches) concepts
- Scales & patches sizes settings may be viewed as architectures

- Python Codebase was developed in order to allow fast and large-scale research for optimal architecture
- Bounded support extrapolation is unstable Interp. support Extrapolation Risk - example \rightarrow supports must be saved in memory Dependence on polynomial degree Swiss roll inference poly degree = 9poly degree = 6**Results** Tests were performed over MNIST & CIFAR10 datasets
 - MNIST digits images of size 28x28

- Theoretical proof of convergence
- Practice set a high-performance solution

Core idea

- Data: : $\{x_i\}_{i=1}^N \in \mathbb{R}^d$, $X \in \mathbb{R}^{N \times d}$
- Latent gaussian assumption: $z_i \sim \mathcal{N}(0, I^d), \quad Z \in \mathbb{R}^{N \times d}$
- Execute iteratively:
- Apply random rotation ("set direction of view")
- Fit marginal distributions \rightarrow save the transform coefficients

- OOP approach an "sklearn/pyTorch"-like model
 - Listing of layer objects high flexibility
 - Layer learns transforms in specific dimensions "Conv" = patches split

GenFlow			
+ layers: list <layer> + n_gen_samples: int</layer>	`	Layer	
+ last_fitted_layer: int	+ features	_dim: int	
+ init_seed: int	+ poly_de	g: int	
+ field: type	+ mapping	_tensor: ndarray	
+ fit	+ support_	bounds: tuple	
+ transform	+ lin_map	_tensor: ndarray	
+ fit_transform	+ n_iter: ir	II t list: list <int></int>	
+ get_layer_list	+ proj_ma		
+ add_layer	+ fit	x1.4	
	+ transform	+ transform	
3	+ nt_trans	IOIT	
	Conv	Linear	
		•••	
	+ fit	+ fit	
	+ transform	+ transform	
	+ fit_transform	+ fit_transform	
		•••	
		•	
Moc	iel Hierarchy – m	ain	
pring	cipals		

All labels are similar (digits) – performed learning over the entire dataset

outcome of fitting process on the initial Latent samples

sampled from gaussian and transformed

- CIFAR10 animals & vehicles images of size 32x32x3
- Labels represent different objects ('ship', 'cat', etc.) performed fitting on single label

Current Architecture

• Utilizes the multi-scale & patches concepts.

Feedforward results outcome of fitting process on the initial Latent sample

New realizations are not successful yet

Conclusions

- Theoretical proof is yet out of hand, but seems feasible due to toy example results and theoretical research
- Performance is highly dependent on runtime. results were achieved by short runs relative to 'state of the art' methods (GANs, etc.) \rightarrow potential for high quality results in the future

