
Introduction
• Generative modelling

▪ deals with the inference problem of high-

dimensional data distribution

▪ Current methods (mostly Deep NN) require 

long gradient-based optimization, and have 

low flexibility for changes

• Projection based approach

▪ Multi-directional view allow density inference 

(e.g., CT imaging) 

Goal
• Develop an iterative method for high-

dimensional distribution modelling with ‘state 

of the art performance’

▪ Theoretical - proof of convergence

▪ Practice – set a high-performance solution

• Data: : 𝑥𝑖 𝑖=1
𝑁 ∈ ℝ𝑑 , 𝑋 ∈ ℝ𝑁𝑥𝑑

• Latent gaussian assumption:

𝑧𝑖~𝒩 0, 𝐼𝑑 , 𝑍 ∈ ℝ𝑁𝑥𝑑

• Execute iteratively:

▪ Apply random rotation (“set direction of view”)

▪ Fit marginal distributions → save the 

transform coefficients

Core idea

Marginal fitting

Results

Working in high dimension

A random-projection based approach for 

generative modelling
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The Fitting Challenge

Architecture modularity

• Facing the Curse of Dimensionality 

• Utilize multi-scale and spatial relations (work 

with patches) concepts

• Scales & patches sizes settings 

may be viewed as architectures 

• Python Codebase was developed in order to 

allow fast and large-scale research for optimal 

architecture

• OOP approach – an “sklearn/pyTorch”-like 

model

▪ Listing of layer objects – high flexibility

▪ Layer – learns transforms in specific 

dimensions

“Conv” = patches split
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Toy example - Swiss roll - 3D representation & 2D joint plot 
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Splitting to patchesMulti-scale inference

Low → Mid→ High

Model Hierarchy – main 

principals

• Fitting using finite sets raises problems for the 

generative transform

▪ Bounded support – extrapolation is unstable

→supports must be saved in memory

• Dependence on polynomial degree 

𝒑𝒐𝒍𝒚𝒇𝒊𝒕

Extrapolation Risk - example

poly degree = 6 poly degree = 9

Swiss roll inference

Conclusions
• Theoretical proof is yet out of hand, but seems 

feasible due to toy example results and 

theoretical research

• Performance is highly dependent on runtime. 

results were achieved by short runs relative to 

‘state of the art’ methods (GANs, etc.)

→ potential for high quality results in the future

Current Architecture
• Utilizes the multi-scale & patches concepts.

• Tests were performed over MNIST & CIFAR10 

datasets

• MNIST – digits images of size 28x28

▪ All labels are similar (digits) – performed 

learning over the entire dataset

• CIFAR10 – animals & vehicles images of size 

32x32x3

▪ Labels represent different objects (‘ship’, 

‘cat’, etc.) –

performed fitting on single label

▪ New realizations are not successful yet

New realizations

sampled from gaussian and 

transformed

Feedforward results

outcome of fitting process on 

the initial Latent samples

Feedforward results

outcome of fitting process on the 

initial Latent sample


