

Signal and Image Processing Lab

RGRB9 **Learning Super-Resolution space**

Chen Goldenberg and Uri Savir, Supervised by Idan Kligvasser

Challenge of NTIRE 2021

Introduction

 Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images

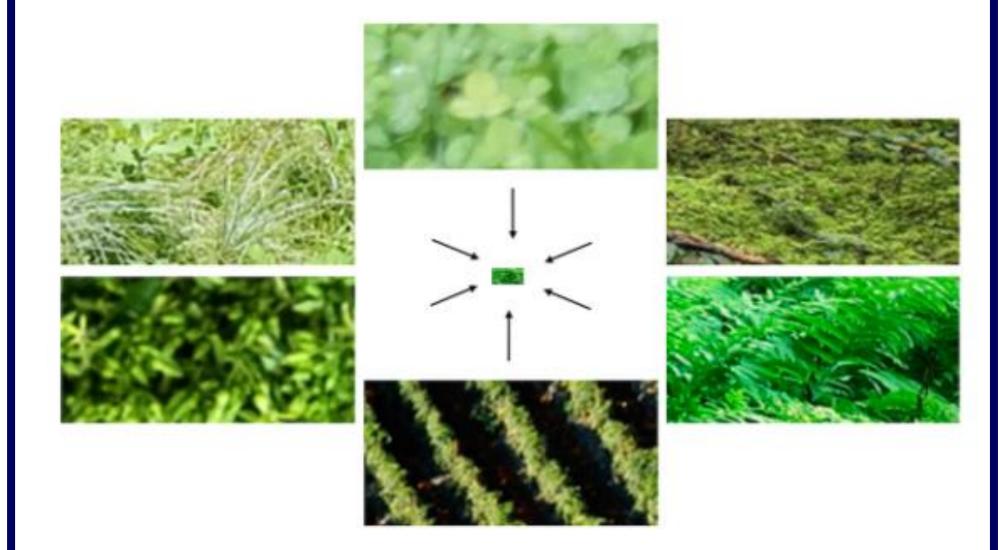
Evaluation principles

Visuality evaluation as perceived by humans

Challenge Rules

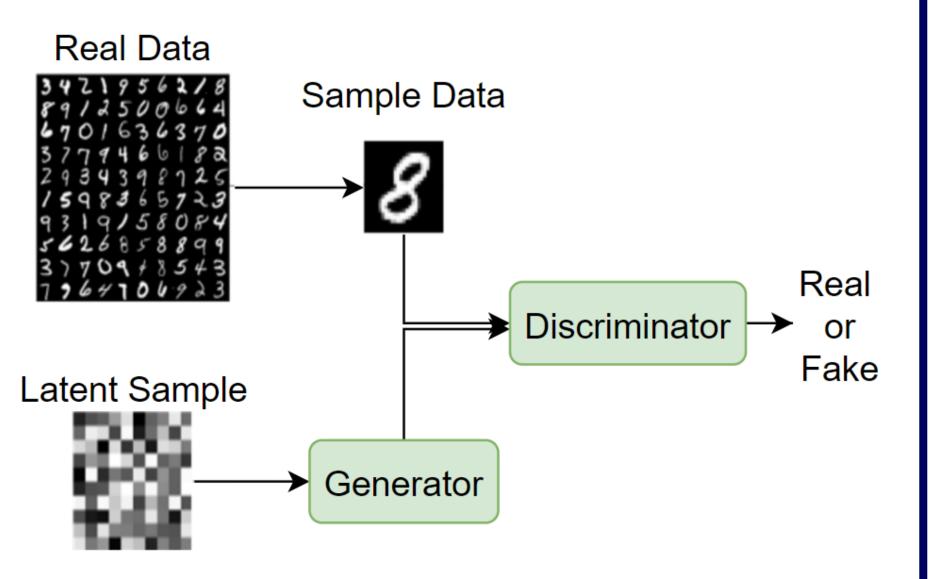
The method cannot be limited to a maximum

- Infinitely many high-resolution images can be down-sampled to the same low-resolution image
- That means that the problem is ill-posed and cannot be inverted with a deterministic mapping
- Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible highresolution images given a low-resolution image



- Spanning the SR Space in order to get meaningful diversity
- Obtain a LR-PSNR of:
- $PSNR(SR \downarrow, LR) \ge 45 \text{ dB}$

Generative Adversarial Network - GAN



number of different SR samples

- All SR samples must be generated by a single model
 - No ensembles are allowed
- No self-ensembles during inference
 - e.g. flipping and rotation
- All SR samples must be generated using the same hyper-parameters
- Deterministic methods will naturally score zero in the diversity measure

Solution Method

Modifying the SRGAN architecture and loss function in order to fulfil the competition challenge

space of plausible SR

Goals

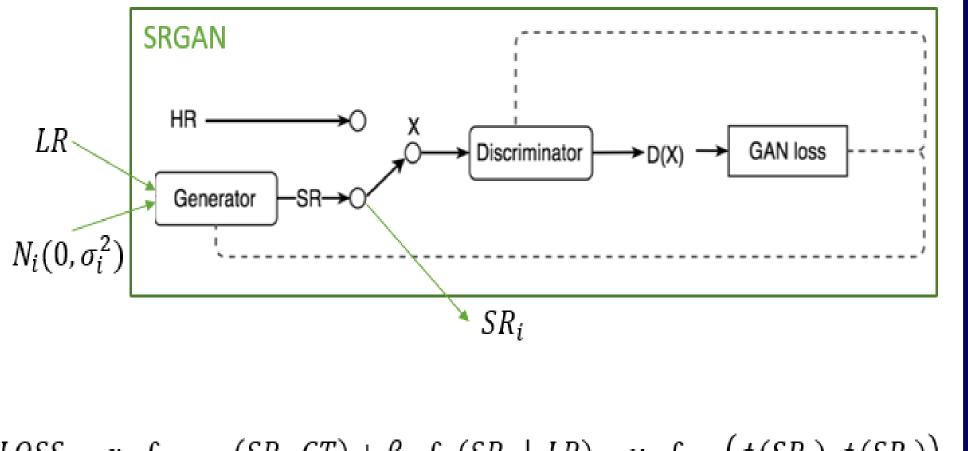
- The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible superresolutions
- Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans
- The solution should be capable of sampling an arbitrary number of SR images capturing meaningful diversity
- Each individual SR prediction should be consistent with the input low-resolution image

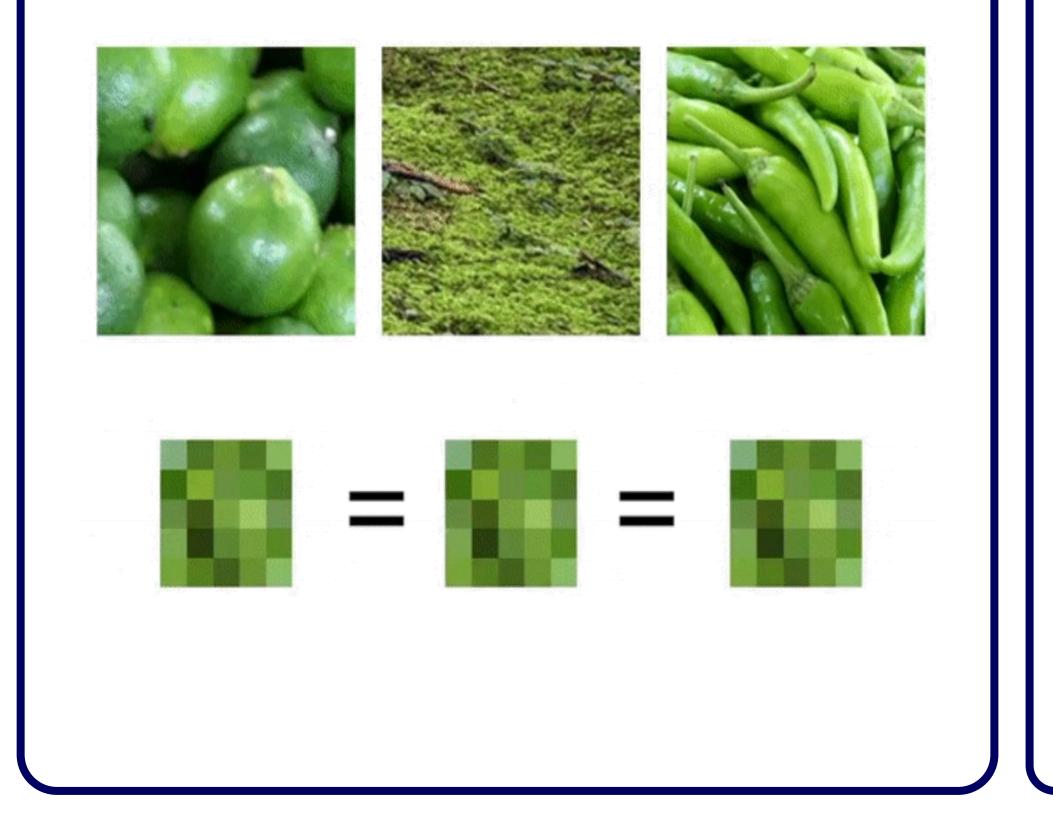
- Adversarial training of Generator & Discriminator
- The Generator generate fake samples, tries to fool the Discriminator
- The Discriminator tries to distinguish between real and fake samples
- The training is adversarial: train them against each other

SR-GAN

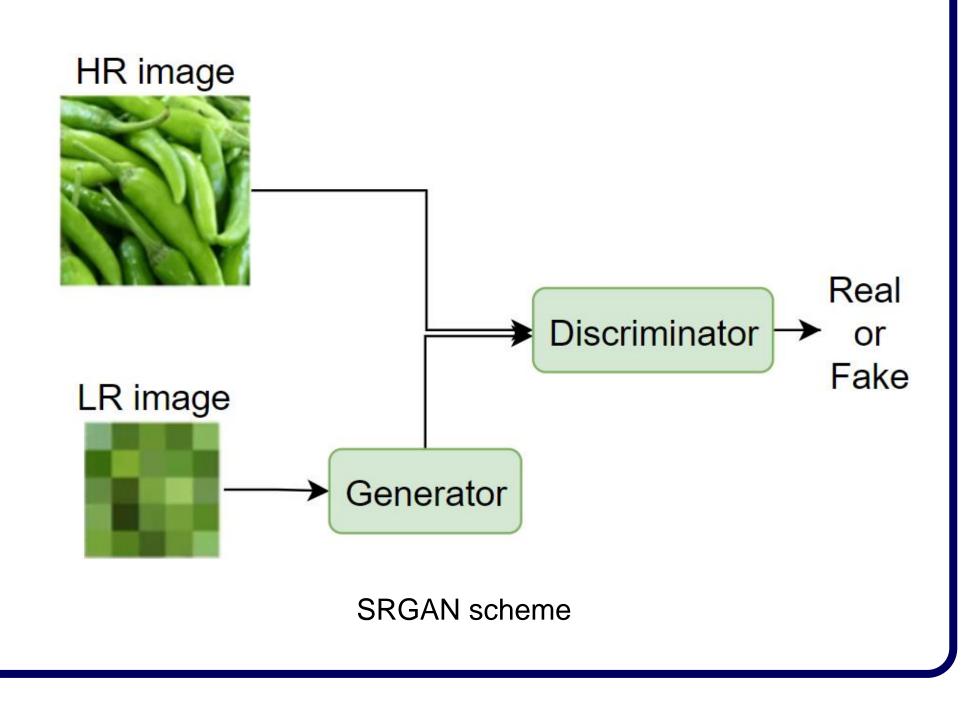
- Super Resolution GAN
- The training set is Low-Resolution images, and the ground-truth is their High-Resolutions
- Low-Resolution images are the input for the Generator
- The Generator generates using LR images the SR images to feed the Discriminator and try to fool it
- The Discriminator inputs consists of both

- To get diversity between outputs:
 - Use random noise as input to the generator in addition to the LR image
 - Added "diversity" element to the loss function:
 - Takes two sequential outputs and insert each one to a pretrained classification network, then uses L1 between the outputs
 - Negative coefficient maximization required





HR and SR images, and is trained to distinguish between real HR to fake generated SR



 $LOSS = \alpha \cdot \mathcal{L}_{SRGAN}(SR_i, GT) + \beta \cdot \mathcal{L}_1(SR_i \downarrow, LR) - \gamma \cdot \mathcal{L}_{var}(\phi(SR_i), \phi(SR_j))$

Our solution scheme

- In order to stay consistent to the original LR -added PSNR element to the loss function:
 - Down sampling (bicubic) the SR output to the same dimensions as LR
 - Calculate PSNR between the LR and the SR-Down-Sampled images