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3D Object Detection For Intel RealSense LiDA

Anaelle Yasdi, Judit Ben Ami, Ori Bryt

Introduction

RealSense LIiDAR camera - Light Detection And Ranging
Time-Of-Flight depth camera that sends a laser pulse and calculate the z using: = INTEL” REALSENSE™

LIDAR CAMERA L5153

c-t

zZ=— c — speed of light t - time of flight

World's smallest

high-resolution LiDAR
depth camera.

3D Object Detection:

Estimate the oriented 3D bounding boxes and classes from 3d data

Objective

Object detection and classification from point clouds taken by L515, using deep learning methods
* Real scene images
» Use pre-trained network (VoteNet) and adapting to L515 data using transfer learning

NN: PointNet

Problem: point cloud is N orderless points, each
represented by D dimensional vector

Chosen NN: VoteNet

* The Point Cloud feature learning backbone is based on PointNet++

The model needs to be invariant to N! permutation  From the features extracted, a Voting procedure is done based on Deep Hough voting
Solution 1: point clouds » voxels Solution 2: multi-views 2D images * Votes are divided into K clusters by spatial clustering
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Contains 10,355 RGBD images and camera | Rults on SUNRGBD |

calibration parameters of indoor scenes.
: Input bathtub  bed  bookshelf chair desk  dresser nightstand sofa table toilet | mAP

DSS [42] Geo+RGB | 44.2 78.8 11.9 61.2 20.5 6.4 154 53.5 50.3 78.9 | 42.1
COG [55] Geo+RGB | 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6
2D-driven [20)] | Geo+ RGB | 43.5 64.5 31.4 48.3 279 259 41.9 50.4 37.0 80.4 | 45.1
F-PointNet [] | Geo+RGB | 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 | 54.0

VoteNet (ours) Geo only 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

Solution
ToolBoox capture L515 Database

Take pictures with
Real Sense LIiDAR
L515 camera

Label

D : 9 (Matlab LIDAR
reprocessing an ToolBox)

Image labeling

LiDAR L515 SUNRGBD
Train NN (RealSense) Data Data

« Matlab ToolBox: Lidar labeler

Check Test Set
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Accuracy

Conclusions

 The camera doesn’t detect well dark and shiny objects
 VoteNet results vary compared to other networks — some classes (chair, toilet) have impressive results, while others have poor results




