

3D Object Detection For Intel RealSense LiDAR

Anaelle Yasdi, Judit Ben Ami, Ori Bryt

Introduction

RealSense LiDAR camera – Light Detection And Ranging

Time-Of-Flight depth camera that sends a laser pulse and calculate the z using:

 $z = \frac{c \cdot t}{2}$ c - speed of light t - time of flight

3D Object Detection:

Work In Progress

Objective

Object detection and classification from point clouds taken by L515, using deep learning methods

- Real scene images
- Use pre-trained network (VoteNet) and adapting to L515 data using transfer learning

NN: PointNet

Problem: point cloud is N orderless points, each represented by D dimensional vector The model needs to be invariant to N! permutation

Chosen NN: VoteNet

- The Point Cloud feature learning backbone is based on PointNet++
- From the features extracted, a Voting procedure is done based on Deep Hough voting
- Votes are divided into K clusters by spatial clustering
- PointNet-like network generates the object proposals from votes

function: $f(x_1, x_2, ..., x_n) = \max\{x_1, x_2, ..., x_n\}$ $f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$

Database: SUNRGBD

Contains 10,355 RGBD images and camera calibration parameters of indoor scenes.

Results on SUNRGBD

	Input	bathtub	bed	bookshelf chair		desk	dresser	nightstand sofa		table	toilet mAP	
DSS [42]	Geo + RGB	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	42.1
COG [38]	Geo + RGB	58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	51.3	70.1	47.6
2D-driven [20]	Geo + RGB	43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	45.1
F-PointNet [34]	Geo + RGB	43.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	54.0
VoteNet (ours)	Geo only	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7

Solution

Conclusions

- The camera doesn't detect well dark and shiny objects
- VoteNet results vary compared to other networks some classes (chair, toilet) have impressive results, while others have poor results