

Signal and Image Processing Lab

CASSP

Optimizing a Binary Intelligent Reflecting Surface for OFDM Communications

Tomer Fireaizen, Dan Ben-David, Shaked Hadad, Nir Kurland and Sima Etkind Mentored by Prof. Israel Cohen and Supervised by Yair Moshe and Pavel Lipshitz

IEEE SP Cup

Data Set

Generative Neural Network

- The most prestigious competition in signal processing for undergraduate students
- Solving real-world problems with signal processing methods
- The competition finals take place at the ICASSP conference

Goals

- Characterize the behavior of an intelligent reflecting surface
- Develop a control algorithm to configure the surface
- For each user, find a configuration that gives the highest data transmission rate
- Obtain highest score among all the competitors

Challenges

- Finding best configurations out of 2⁴⁰⁹⁶
- No data provided on the IRS spatial shape

- A novel synthetic dataset, divided to two:
 - Dataset1 includes 4×4096 configurations, and their received signals for a certain user
 - Dataset2 includes 4096 configurations, and their received signals for 50 users
- The transmitted pilot signal is $x[k] \equiv \alpha$
- The pilot configurations create a 4096 × 4096 Hadamard matrix

Channel Estimation

 Direct channel estimation using the pilot matrix Hadamard formation:

$$\hat{h}_d = \frac{\sum_{i=1}^{4096} z_i}{4096 \cdot \alpha}$$

- z_i The received pilot signal
- BS \Rightarrow IRS \Rightarrow Receiver cascaded channel estimation $\widehat{V} = \frac{1}{\alpha} ([\underline{z}_{1}^{f} \cdots \underline{z}_{4096}^{f}] - [\underline{h}_{d_{1}}^{f} \cdots \underline{h}_{d_{4096}}^{f}] \cdot \alpha) [\underline{\omega}_{\theta_{1}} \cdots \underline{\omega}_{\theta_{4096}}^{f}]^{-1}$
- Estimated the spectral noise density using

- A novel method for configuration optimization
- Based on the known paper "Deep Image Prior" [Ulyanov et al., 2018],
- Use an untrained CNN as a regulator
- Optimize the weights to get maximal data transmission rate

- The output of the first NN is a constant-columns steering configuration
- We used the second NN to fine tune the configuration

- Insufficient small dataset
- Limited number of papers on IRS discrete optimization

Intelligent Reflective Surface

- An Intelligent Reflecting Surface (IRS) is a twodimensional array of metamaterial
- Consists of an array of controllable passive elements
- Can alter the amplitude and/or phase of the reflected signal
- Helps to overcome the problem of signal attenuation in 6G communication

- redundancy in dataset 1
- Deeper understanding of the IRS geometrical shape helped us to overcome the lack of data

Gradient-Quantization Algorithm

- Efficient heuristic solution exist for the continuous phase case – Strongest Tap Maximization (STM) [Zheng & Zhang, 2020]
- Initialize: STM continuous phase configuration
 - Find best separating line for the quantized phases

First NN output example Second NN output example

Localization of users

 It is possible to locate the relative positions of the users based on the similarity between their optimal configuration

Results

• Finished in the 6^{th} place in the competition

Method	

Mean Data Transmission Rate

- $z[k] = \sum_{\ell=0}^{\infty} \left(h_d[\ell] + \boldsymbol{v}_\ell^T \boldsymbol{\omega}_{\boldsymbol{\theta}} \right) x[k-\ell] + w[k]$
- *z*[*k*] Received signal
- x[k] Transmitted signal
- h_d Direct channel BS \Rightarrow Receiver
- v_{ℓ} Cascaded channel BS \Rightarrow IRS \Rightarrow Receiver
- $\boldsymbol{\omega}_{\boldsymbol{\theta}} \in \{\pm 1\}^{1 \times 4096}$ IRS configuration
- *w*[*k*] AWGN

- Our novel algorithm consists of two steps that repeat until all IRS elements are fixed :
 - Quantize of the most ambiguous element
 - Optimize the unquantized element using gradient-descent

