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Introduction Core Training Solution Idea
. Few papers have been published in the science * The solution Is based on HiFi GAN architecture
community regarding speech to singing (S25) * Corresponding speech and singing words as inputs
conversion, yet natural and accurate sounding | | _
output is hard to obtain * Loss is calculated using the waveform, spectrogram and pitch from

generated singing and ground truth singing

* In previous SIPL projects, speech to singing
conversion had been partially achieved by using

classic signal processing methods Training scheme:
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* Converting speech to singing using deep
learning methods
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. Time-domain-based conversion using Singing wavetorm
generative adversarial network (GAN) ‘
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* No prior known solutions for S2S time-domain- g o) s | %
based training * We used coupled speech & sing recordings from 5 i :
corresponding singing . [Sharma et al., 2020] ij ﬂ =L S
 Deep network architecture which will satisfy the . ~50 songs and speech lyrics Toes was x s aas 4| RegwouDualonfSed
conversion (adapting existing network for | |
singing+speech input and adding pitch to the = ~170 minutes In total " o e i
s . . . * We need a uniform len or all speech-singin
training process) « Split songs and coresponding speech Iinto J P J9ing

. pairs with minimal data loss/distortion:
single words

* Time stretch the shorter of the pair to the

« Split the data to subsets based on clustered longer’s size

= [Kong et al., 2020] song output durations
HI FI GA N * Resample both to the size of the longest file In

» Generates high fidelity waveform from the dataset

spectrogram (speech synthesis)
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A state-of-the-art GAN architecture .
. Data preprocessing scheme: —sing word {nﬂﬁiﬂ;ﬁ';::ﬂ
Evaluate the loss based on spectrogram and ; sing 'F“Et“ )
waveform (time domain) max s,n length
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] ] : US dataset speech words all sing words finding max i train
than the best publicly available models for ; corresponding sing length ;
speech synthesis i i
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Results So Far

* Successfully trained the HiFi GAN model on singing inputs — transfer learning on the pretrained
model
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