

Creating Image Segmentation Maps Using GANs

Inbal Aharoni and Shani Israelov Supervised by Idan Kligvasser

Introduction

The use of GAN has drastically affected low-level vision in graphics, particularly in tasks related to image creation and image-to-image translation.

StyleGAN

StyleGAN not only allows for a better understanding of the generated output, but also produces images that look more authentic than previously generated

Comparison

We compare our results to the use of only unconditional gan by using the same styleGAN model on the realistic images.

- With the success of GANs we will produce segmentation maps. With these maps and with the help of the generative model we can get a semantic understanding of the data set and even create completely new scenes.

Goals

- The project goal is to create segmentation maps using unconditional GANs in order to use those images in another GAN which will create a realistic street image.
- Instead of generating street images directly from one GAN, our training process will have two stages:
- **1. We will create a segmentation images** of streets using styleGAN.
- 2. We will use those images as an input for existing GAN (SPADE) that create and add a layer of texture to a segmentation images to create a realistic picture.

images.

Traditional generator vs styleGAN generator

The Changes to the model include:

- **Progressive growing.**
- The use of a mapping network to map points in latent space to an intermediate latent space.
- The use of the intermediate latent space to control style at each point in the generator model. The introduction to noise as a source of variation at each point in the generator model.

Unconditional gan results

FID

- For the evaluation of the performance of GANs at image generation, we will use the **"Frechet Inception Distance" (FID).**
- FID captures the similarity of generated images to real ones better than the **Inception Score.**
- **A lower FID indicates better-quality** images; conversely, a higher score indicates a lower-quality image and the relationship may be linear.

 $ext{FID} = |\mu - \mu_w|^2 + ext{tr}(\Sigma + \Sigma_w - 2(\Sigma \Sigma_w)^{1/2}).$

DCGAN

In order to understand and learn about
GANs, we used existing DCGAN that
works for 3x64x64 face images and tried it
on our data.

StyleGAN results

SPADE

- **SPADE** stands for spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout.
- In order to use SPADE we had to do some adjustments:

FID equation

Results

Images after SPADEOriginal segmentation mapFIDOur images after SPADEOriginal realistic images179.463Images styleG an generationOriginal realistic images247.257FID comparison tableFID comparison table						
Our segmantion maporiginal segmentation map245.989Our images after SPADEOriginal realistic images179.463Images styleG an generationOriginal realistic images247.257FID comparison tableFID comparison table			FID			
Our images after SPADEOriginal realistic images179.463Images styleG an generationOriginal realistic images247.257FID comparison table	Our segmantion map	original segmentation map	245.989			
Images styleG an generationOriginal realistic images247.257FID comparison table	Our images after SPADE	Original realistic images	179.463			
FID comparison table	Images styleG an generation	Original realistic images	247.257			

DCGAN results

- **Problems with DCGAN Results: 1. Distorted dashboard symbol** 2. No human are shown, only "redish" stains
 - 3. Places where the color is not uniform

- **Conversion of each pixel to the closest** pixel value among the segmentation map options.
- **Create Label Map** from the segmentation map.

StyleGAN and SPADE results

Conclusions

- We created successful segmentation images of streets using styleGAN. We used these images as an input for
- existing GAN (SPADE) that created and added a layer of texture to a segmentation images to create a realistic picture.
- Our two-step process produced better results from the unconditional GAN alone.
- **Two-step process simplifies the image** generation process.

