
Introduction
• The use of GAN has drastically affected 

low-level vision in graphics, particularly in 

tasks related to image creation and 

image-to-image translation. 

• With the success of GANs we will 

produce segmentation maps. With these 

maps and with the help of the generative 

model we can get a semantic 

understanding of the data set and even 

create completely new scenes. 

Goals
• The project goal is to create segmentation 

maps using unconditional GANs in order 

to use those images in another GAN 

which will create a realistic street image.

• Instead of generating street images 

directly from one GAN, our training 

process will have two stages:

1. We will create a segmentation images 

of streets using styleGAN.

2. We will use those images as an input 

for existing GAN (SPADE) that create 

and add a layer of texture to a 

segmentation images to create a 

realistic picture.
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• We created successful segmentation 

images of streets using styleGAN.

• We used these images as an input for 

existing GAN (SPADE) that created and 

added a layer of texture to a 

segmentation images to create a 

realistic picture.

• Our two-step process produced better 

results from the unconditional GAN 

alone. 

• Two-step process simplifies the image 

generation process.
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FID
• For the evaluation of the performance of 

GANs at image generation, we will use the 
“Frechet Inception Distance” (FID) .

• FID captures the similarity of generated 
images to real ones better than the 
Inception Score.

• A lower FID indicates better-quality 

images; conversely, a higher score 

indicates a lower-quality image and the 

relationship may be linear.

SPADE

StyleGAN results

• StyleGAN not only allows for a better 

understanding of the generated output, 

but also produces images that look more 

authentic than previously generated 

images.

• The Changes to the model include:

• Progressive growing.

• The use of a mapping network to map 

points in latent space to an 

intermediate latent space.

• The use of the intermediate latent space 

to control style at each point in the 

generator model.

• The introduction to noise as a source of 

variation at each point in the generator 

model.

• SPADE stands for spatially-adaptive 

normalization, a simple but effective layer 

for synthesizing photorealistic images 

given an input semantic layout.

• In order to use SPADE we had to do some 

adjustments:

• Conversion of each pixel to the closest 

pixel value among the segmentation 

map options.

• Create Label Map 

from the segmentation map.

• In order to understand and learn about 

GANs, we used existing DCGAN that 

works for 3x64x64 face images and tried it 

on our data.

• Problems with DCGAN Results:

1. Distorted dashboard symbol

2. No human are shown, only “redish” 

stains

3. Places where the color is not uniform
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• We compare our results to the use of 

only unconditional gan by using the 

same styleGAN model on the realistic 

images. 

FID equation


