

Noa Tykochinsky and Itay Wengrowicz, Supervised by Shunit Polinsky

In collaboration with

Introduction

 Most of the current prosthetics available require muscle movement

Word Detection

 Google's free Speech Recognition algorithm transcribes input audio to text

Complete Solution

• The algorithm's diagram:

• We would like to improve the user's everyday life by applying voice control to the prosthetic hand

Goals

- Algorithm that verifies the user's specific voice
- Recognize voice commands
- Send commands to prosthetic hand accordingly

- Uses a pre-trained neural network
- Able to detect words with slight accent
- Calculate DL distance between text and known words we are looking for
 - If the distance < 0.5, receive closest word
- Similar sounding word bank for our keywords

Speaker Verification

and the second sec	TOUD
8192 -	

project block diagram

 After activated, for 10 seconds- only a keyword will be needed to activate the hand

• Work in real time and real-life environments

Challenges

- Efficient algorithm for fast run time
- Identify speaker and commands in non ideal environments
- Israeli accent affect the speech to text results

Voice Activity Detection

- Feature extraction using Mel spectrogram
 - Has the best performance for training neural networks
- Generalized end to end loss for speaker verification.
 - Pretrained model
 - Accuracy Threshold is set at 0.7
 - Result dependent on other speakers: we added data and finetuned the model

Similarity Percentage To Test

Results

• Percentages out of N=40 tests

False Positive speaker identification results [%]

unknown speaker to the network after network had trained on the speaker

User identification percentage in Noisy enviroment

-

Voiced and quiet audio segments

- VAD classifies audio data as voiced or unvoiced
- Detect if there is audio input the algorithm should start processing
- We use VAD that Google developed, which is:
 - Fast
 - Modern
 - Free

Verification accuracy compared to multiple speakers

 User will be recognized if he has the highest accuracy rate and if Rate > Threshold

