

Deep Learning Based Target Cancellation for Speech Dereverberation **Neriya Golan and Mikhail Klinov** Supervised by Yair Moshe & Baruch Berdugo

- Dual channel expand the solution to two microphones, placed at a certain configuration
- Real-time the process of dereverberation should not cause a distinguishable delay

Challenges

- Existing DNN-based solutions are usually complex and lack code, making the results hard to reproduce
- Implementation of an end-to-end DNN-based solution from scratch

Dataset

TIMIT Corpus - 6300 speech recordings carried by 630 speakers from 8 different American dialect regions

Sentence Type	#Sentences	#Speaker s	Total	#Sentences per Speaker
Dialect (SA)	2	630	1260	2
Compact (SX)	450	7	3150	5
Diverse (SI)	1890	1	1890	3
Total	2342		6300	10

Dual Channel Approach

- It is possible to enhance performance by feeding the DNN a 2nd input – consisting of reverberations only (without the direct path signal)
- This is usually done by a beamformer which utilizes a microphone array to derive the reverberations

We propose to replace the microphone array by adding a single microphone which is directed at the opposite direction of the speaker, hence "hears" only reverberations

Speech Quality

Clean		T60 = 0.2 sec	T60 = 0.5 sec	T60 = 0.8 sec
	Rev	3.71	3.10	3.03
3.77	Rec - Single	3.06	2.62	2.65
	Rec – Dual	2.99	2.58	2.53

DNSMOS Score – Speech Quality Metric – Higher is better

Spectral Distance

	T60 = 0.2 sec	T60 = 0.5 sec	T60 = 0.8 sec
Rev	3.29	4.56	5.10
Rec - Single	2.97	3.47	3.93
Rec – Dual	3.09	3.24	3.34

Mean distance between spectrograms – Lower is better

Conclusions

Reverberant Speech

- Simulated using Room Impulse Response Generator by [Jarrett et al., 2012]
- Simulation of 2 different rooms and 3 different reverberation times (T60) - 0.3, 0.6, 0.9 sec for training and 0.2, 0.5, 0.8 sec for testing

- Successful removal of reverberations, at a cost of decreasing speech quality caused by phase – magnitude inconsistency
- The dual channel approach:
 - Insufficient results
 - Should be tested in more complex architectures
- Work in progress:
 - Pseudo-phase sensitive loss functions for training
 - Advanced STFT reconstruction HiFi-GAN [Kong et al., 2020]

