

Signal and Image Processing Lab

Topology of Signals

Saar Ron and Tomer Fireaizen, Supervised by Prof. Omer Bobrowski

Introduction

• Topology deals with the properties of a geometric object, that are preserved under continuous deformations

Cycle Diagram

- Alpha complex process defines birth and death times of cycles
- These times can be represented in a diagram:

Alarm Detection

- Topological Signal Processing is a new and exciting field in the Signal Processing world
- It is based on converting a signal to a point cloud and measuring its topology
- This work shows a novel solution to a real-world problem using topological tools

Goals

- Learn the field of Topological Signal Analysis
- Improve the current methods of topological features extraction
- Apply to a real-world problem

Challenges

• Limited number of previous works, Mostly theoretical

Feature Extraction

- Features can be extracted from the diagram:
- \mathcal{H}_d The set of all holes of dimension *d*:
 - $\mathcal{H}_d = \{\forall h | h \text{ is in dimension } d\}$
- $\ell(h)$ The life span of h: death(h) birth(h)
- \mathcal{L}_d^i The hole from dimension d with the i^{th} longest life span

- Alarms are mathematically ill-defined
- However, alarms tend to be annoying since they are composed of quasi-periodic signals
- Topological Signal Processing is excelling in the detection of quasiperiodicity

Dataset – UrbanSound8K

- State-of-the-art dataset of urban sounds
- Contains ~8,700 excerpts from 10 classes:
- ~900 alarms
- ~7,800 other sounds like:

Car engine, Dog barks, Gun shots, ...

Incremental learning on balanced batches

- Hard and Complicated Math
- Low SNR conditions

Signal to Topological Object

Signal ⇒ Point Cloud

- Using Sliding Window transformation: $\mathcal{T}_{\tau,w}(f[n]) = [f[n], f[n + \tau], \dots, f[n + w\tau]] \in \mathbb{R}^{w+1}$
- Point Clouds converted to Simplicial Complexes using the Alpha Complex method

- $|\mathcal{H}_d|$ Cardinality of \mathcal{H}_d
- Examples of statistical features:

 $\frac{\mathcal{L}_{1}^{1}}{|\mathcal{H}_{1}|}, std_{i}(\mathcal{L}_{d}^{i}), |\mathcal{H}_{1}| when \ell_{1} > T, \dots$

Examples of shape-related features:

Periodic Score: $PS = \mathcal{L}_1^1 - \mathcal{L}_1^2$

Quasi-Periodic Score: $QPS = \mathcal{L}_1^1 \times \mathcal{L}_1^2 \times \mathcal{L}_2^1$

Analysis Scheme

Results

- Previous works used deep learning networks
- Spectrograms were used as inputs
- Our work uses a classic classifier

Name	Year	Accuracy	False Negative	False Positive
Zhang et al.	2018	96.4%	17.33%	1.96%
Garg et al.	2020	96.7%	15.76%	1.96%
Li et al.	2021	98.7%	5%	0.95%
Ours	2021	98.8%	7.14%	0.39%

Run Time Analysis

~1 [sec] to classify four windows of 4 [sec]

Topological Properties

- Zero order cycle connected component
- First order cycle hole (unremovable loop)
- Second order cycle air pocket
- Higher degrees exist

AdaBoost Classifier

- This classifier can show the strength of topological features
- Modified feature priority based on feature ranking

Implemented in Python and running on CPU

Conclusion

- A State-of-the-art AdaBoost classifier based on topological features for alarm detection
- Introducing many contributing topological features for signal analysis
- Feasible to run in real-time
- A proof of concept for a real-world application of Topological Signal Processing

