

Gunshot Detection in Video Games

Amit Ben Aroush and Asaf Arad, Supervised by Hadas Ofir

In collaboration with WAVES

Introduction

Gunshot detection is a Feature that upgrades the gaming experience.

The Database

- Extract features:
 - Correlation with sample

Transfer Learning

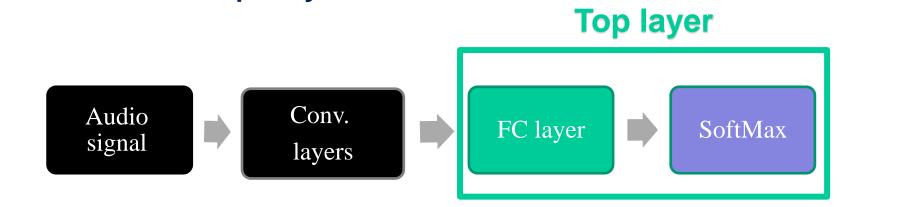
Common way to use pre-trained CNNs as an initialization for the task of interest.

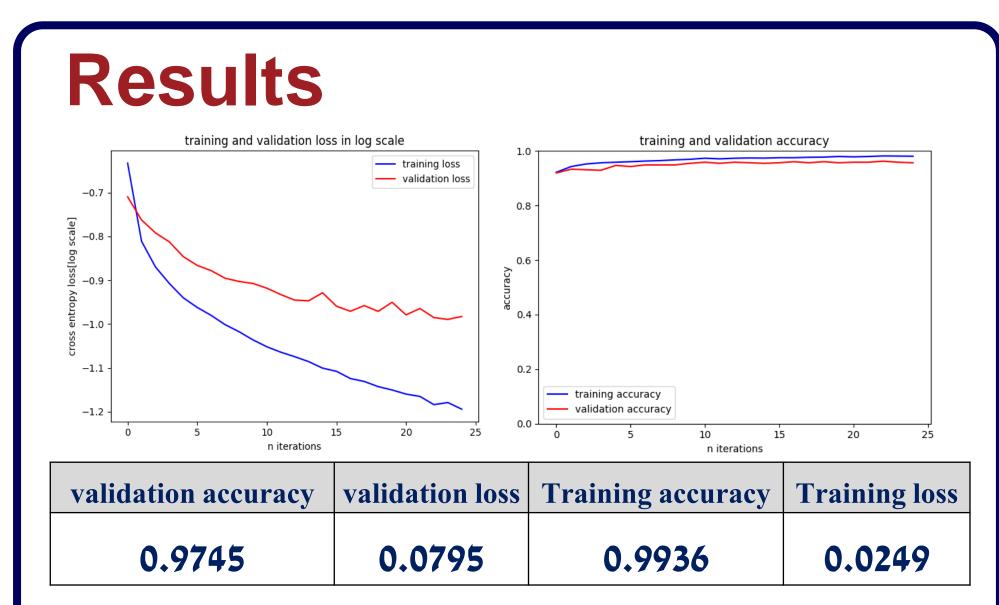
- Helps dealing with unseen/hidden enemies.
- Gunshots detection systems already exist in real world for security.

Goals

- Automatic system for real-time acoustic detection of gunshots in video games.
- Generic gunshot in generic video game.
- We wish to prove the feasibility of using deep-learning methods for detection of generic gunshot in video games.

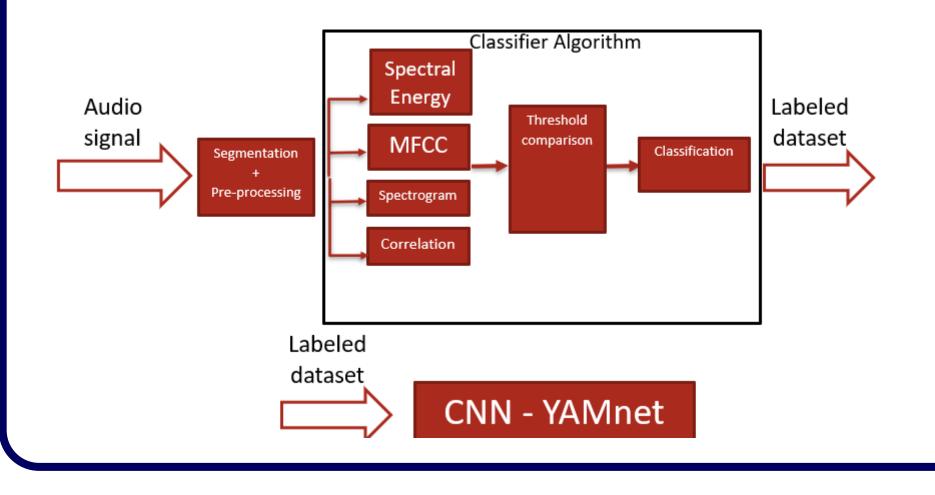
Challenges


- Lack of labeled datasets.
- Restricted sounds in video games.
 - Variety of sound.
- Fixed synthesized sound patterns.
- Multiple gunshots in a frame-bursts.

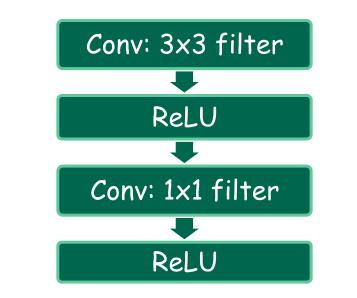

Chosen Solution

- Energy
- Spectrogram features
- MFCC
- Intersection between the classifier labeling and the manual labeling we performed.
- The database was adapted in its characteristics to the database on which the network was trained:
 - Raw data.
 - Resample to 16KHz.
- Data augmentation:
 - Reverberation.
 - White Noise.
- The dataset for training and testing the network: 2843 frames, contains 1100 gunshot frames and 1743 non-gunshot frames.

YAMnet Model


- Fine-tuning:
- CNN layers are fixed.
- Replace the classifier on top of the CNN
 - top layers contain high level features.
- Train top layer.

In order to test the quality of the chosen solution, we compared it with different solutions:


- Manual analysis of basic examples.
- Build a classifier algorithm that pre-processes the data and selects optimal classification features.
- Building the Dataset.
- Use a pre-trained network and alter it to classify gunshots using transfer learning.
 - Convolution network called YAMnet.

Network I/O

- System's input: audio waveform signal.
- Waveform is converted to Mel-spectrogram, which is the input to the network layers.

- CNN for acoustic classification:
 - Separable convolutional inner layer

- Fully connected output layer
- SoftMax activation
- 521 event classes

Musia				1 011 010	Human sounds
Music				1,011,949	
Speech	1 1			1,011,065	 Human voice
Vehicle			128,110		- Whistling
Musical Instrument			117,384		 Respiratory sounds
Inside, small room		76,767			 Human locomotion
\$ 262	classes omitted				- Digestive
Boom	1,	651			— Hands
Fusilade	1,	650			 Heart sounds, heartbeat
Swing music	1,	642			 Otoacoustic emission
Crumpling, crinkling	1,	636			Human group actions
Lawn mower	1,	629			- Human group actions
\$ 250	classes omitted				Source-ambiguous sounds
Splinter	153				
Pulleys	152				 Generic impact sounds
Creak	149				 Surface contact
Gargling	137				 Deformable shell
Toothbrush	127				 Onomatopoeia
					- Silence
	100 1,000	10,000 1	100,000 1,000	000	Other sourceless

Fine tuning in this project:

- SVM with linear kernel
 - Features from our dataset.
- YAMnet without fine tuning
 - 9 classes for gunshot.
 - 512 classes for non-gunshot.

Num	Solution	Accuracy	Precision	Recall
1	YAMnet with fine tuning	0.9708	0.9576	0.9576
2	SVM with linear kernel	0.99	0.99	0.99
3	YAMnet without fine tuning	0.8333	0.9296	0.5593

Confusion matrix:

Musical instrume

Music gen

Wind - Thunderstor

- Water - Fire

- Noise

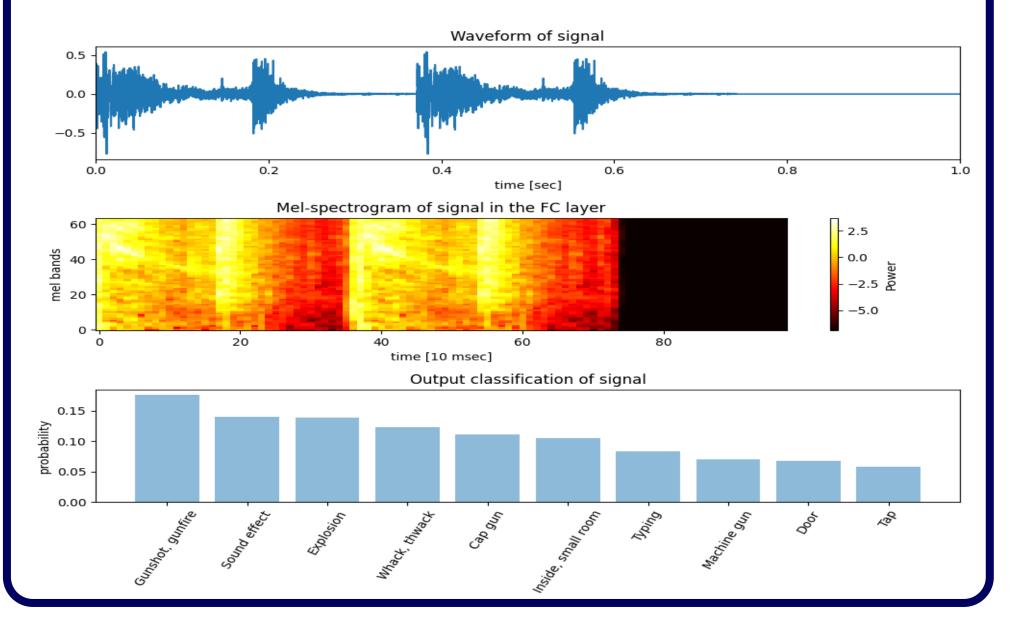
channel, environ ind background

- Sound reproduction

Musical concer Music role

Livestock, farm

animals, worki


Domestic sound

Num	Solution	TN	ТР	FN	FP
1	YAMnet with fine tuning	217	117	1	7
2	SVM with linear kernel	222	117	1	2
3	YAMnet without fine tuning	219	66	52	5

Conclusions

- Our goal was to build a real time system for acoustic detection of gunshots in video games.
- We built a labeled Dataset.

After the SoftMax layer, the classification output of the class with the maximum probability is chosen.

- Extract the top FC layer.
- Define the top layer- FC layer for binary classification.
 - -- Input 1024 patches of 96X64.
- SoftMax activation.
- **Training** the fully connected layer:
- SGD optimizer.
- Cross-entropy loss.
- 1E-4 learning rate.
- 1 batch size.
- 64% training, 16% validation, 20% test.
- 25 epochs.

- most significant characteristics are correlation and spectrogram.
- Least significant characteristic is energy.
- We succeeded in building a deeplearning based system that qualifies the project's requirements.

Future Work

- Expand the project's goal to localize gunshots.
- Expand the variety of gunshot types in video games.

