

Binaural Graphic Analyzer

Dvir Marsh and Yossi Marciano, Supervised by Hadas Offir

In collaboration with

Introduction

- · Binaural recording is a method of recording sound that uses two microphones, arranged with the intentto create a 3-D stereo sound sensation for the listener of actually being in the room with the performers or instruments
- Such recording can be obtaind phisically, by mounitng the microphones on a dummy head simulating the head and torso response; Or by a simulated dummy head recording, where the signal is sent through a complex mathematical algorithm that tries to simulate the binaural effect

Goals

- · Given a binaural recording consisted of multiple sources, we would like to determine (for each
 - Direction: azimuth and elevation
 - Main spectral content
 - Power
- Present and visualize that information on a GUI

Challenges

- · Generation method is unknown: Signal could be generated by phisical recording or by simulation
- · Spectral ques vary from different generation methods

Direction Estimation

ITD Detection

- A possible option for direction estimation is based on internal time difference - ITD
- The ITD was calculated by calculating the maximal cross correlation between the two channels

Azimuth Estimation

- A possible option for direction estimation is based on internal time difference - ITD
- We used an estimated formula by Brown & Duda to calculate the azimuth from the ITD
- · Pros:
 - Easy and fast to calculate
 - Differ slightly between different techniques of binaural audio synthesis
- · Cons:
 - Can't solve front back ambiguity
 - Can't indicate elevation
- We used this block to lower degrees of freedom in the next levels

What is HRTF

- · The change inflicted on the signal as it propagates from the source to each ear is represented as a Head related transfer function - HRTF
- It's possible to record HRTFs in a studio
- · We used the MIT database for our project

HRTF Detection

- It is common to use HRTF bank based algorithms to solve sound localization problems
- A solution reported to be succesful is the Cross Convolution (CC) Algorithm
- Direction Estimation according to CC is the solution to the following optimazation problem:

$$\min_{\widehat{\boldsymbol{\theta}},\widehat{\boldsymbol{\phi}}} \sum \left\| R_{Left} * H_{Right}^{\left(\widehat{\boldsymbol{\theta}},\widehat{\boldsymbol{\phi}}\right)} - R_{Right} * H_{Left}^{\left(\widehat{\boldsymbol{\theta}},\widehat{\boldsymbol{\phi}}\right)} \right\|^2$$

- · Azimuth estimation was used to lower degrees of freedom (otherwise have to check all directions)
- · HRTF heuristic was combined in the algorithm to give extra weight to informative frequency bands
- Those bands are bands in which the variance of the HRTFs is highest:

Variance of HRTFs Along frquency bins

Results

- · Successful Azimuth detection (not considering front back ambiguity)
- Azimuth RMSE: 64.5 degrees
- Elevation RMSE: 53.8 degrees