Acoustic Vehicle Localization

Nadav Abayov and Gefen Levite, Supervised by Hadas Ofir

Introduction

- Nowadays pedestrians who use headphones regularly and people who suffer from hearing disability are exposed to the risk of being hit by passing traffic.

pedestrian

Microphone - \mathbf{X}

Goals

- Designing an algorithm which can alert the user when an endangering vehicle is present:
- Determine the direction of the endangering vehicle.
- Estimate its distance.
- Alert the user.

Challenges

- Data base wasn't documented enough.
- Not enough variety of recorded scenarios.

Selected Solution

- The system works with data segments:
- Each segment is 100 mili seconds worth of samples
- 50% overlap between consecutive segments.
- The sample frequency used was 30 KHz
- The sirens are detected by analyzing the spectrum energy.
- The distance of the vehicle is estimated using regression.
- The direction is calculated with Time Difference of Arrival and geometry (TDoA).

Detecting vehicle sirens

- In order to determine if a data segment contains siren, we calculated the ratio between the maximal energy along the band $340-600 \mathrm{~Hz}$ and the averaged energy along $200-750 \mathrm{~Hz}$.
- Segments with sirens are not used for direction and distance estimation.

Vehicle Detection

- After checking for sirens, the algorithm calculates the TDoA for the data window of the left-right channels and front-rear channels.
- If the variance of the TDoAs for the last 10 data windows is lower than a selected threshold, then the algorithm suspects a vehicle.
- If the variance stays lower than the threshold for 7 data windows, the algorithm will detect a vehicle

Direction Estimation

- From the TDoA the algorithm can calculate the direction of the sound source:
- From Cross-referencing the angle from the leftright channels and the front-rear channels the algorithm can determine the azimuth angle.
\square

Distance Estimation

- In order to estimate the distance of the vehicle, the algorithm makes use of the relation between the energy of the sound signal and the known distances of past samples:

Demonstration

https://www.youtube.com/watch?v =8F5EW0iE0F0

Results

- The algorithm was tested with 34 different samples of a single vehicle passing the system.
- 25 mph Detection time before passing [sec]
- The algorithm provides an average detection time of 5.2 seconds before the vehicle passes the system.
- 25 mph Detection distance before passing [m]
- The algorithm detects the approaching car in an average estimated distance of 38 meters from the system.

Conclusions

- Distance estimation would be done better using advanced machine learning tools.
- Its easier to detect a faster moving vehicle because of the high signal noise ratio.
- Given that the human reaction time is less then a second, the algorithm provides sufficient time for the user to react to a passing vehicle.

